МОДЕЛИРОВАНИЕ ЗАВИСИМОСТЕЙ МЕЖДУ ВЕЛИЧИНАМИ

Применение математического моделирования

Применение математического моделирования постоянно требует учета зависимостей одних величин от других.

Примеры зависимостей:

- время падения тела на землю зависит от его первоначальной высоты;
- давление газа в баллоне зависит от его температуры;
- уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.

Реализация математической модели требует владения приемами представления зависимостей между величинами.

Методы представления зависимостей

Величина – количественная характеристика исследуемого объекта

Характеристики величины			
Имя:	Тип:	Значение	
отражает смысл величины	определяет возможные значения величины	константа	переменная
Имя величины может быть	Основные типы величин:	Пример константы – число Пифагора	
смысловым	числовой	$\pi=3,$	14
«давление газа»	СИМРОЛЬНЫЙ	В описании процесса падения тела переменными величинами являются высота <i>H</i> и время падения <i>t</i>	
символическим			
Р	логическии		

Виды зависимостей

Функциональной зависимостью называется связь между двумя величинами, при которой изменение одной из них вызывает изменение другой.

Пример 1: t (c) — время падения; H (m) — высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/c²) будем считать константой.

Пример 2: Р (н/м²) – давление газа (в единицах системы СИ давление измеряется в ньютонах на квадратный метр); *t* °С – температура газа. Давление при нуле градусов Р₀ будем считать константой для данного газа.

Зависимость между величинами является полностью определенной.

Виды зависимостей

Иная зависимость носит более сложный характер, одна и та же величина может принять разные значения, поскольку на нее могут оказывать влияния и другие показатели.

Пример 3: Загрязненность воздуха характеризуется концентрацией примесей – С (мг/м³). Единица измерения – массы примесей, содержится в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будет характеризовать числом хронических больных астмой, приходящихся на 1000 жителей данного города *P* (бол./тыс.)

Математические модели

Математические модели — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.

Математические модели отражают физические законы и представляются в виде формул:

$$\mathbf{t} = \sqrt{\frac{2\mathbf{H}}{\mathbf{g}}}$$

$$P = P_0 \left(1 + \frac{t}{273} \right)$$

Корневая зависимость (время пропорционально квадратному корню высоты) Линейная зависимость

В сложных задачах математические модели представляют в виде уравнений или систем уравнений.

Табличные и графические модели

Экспериментальным путем проверим закон свободного падения тела

Эксперимент: стальной шарик сброшен с 6-метровой, 9-метровой высоты и т.д. (через 3 метра), замеряя высоту начального положения шарика и время падения

Результат эксперимента представлен в таблице и графике

<i>Н,</i> м	<i>t,</i> c
6	1,1
9	1,4
12	1,6
15	1,7
18	1,9
21	2,1
24	2,2
27	2,3
30	2,5

Табличное и графическое представление зависимости времени падения тела от высоты

Динамические модели

Информационные модели, которые описывают развитие систем во времени, имеют специальное название: **динамические модели**.

В физике это движение тел, в биологии развитие организмов или популяций животных, в химии протекание химических реакций.

Задание на дом

п.17

Практическая работа:

«Моделирование зависимостей между величинами»

Время падения тела на землю зависит от его первоначальной высоты

Математическая модель

$$t = \sqrt{\frac{2H}{g}}$$

- Н (м) высота падения
- t (c) время падения

1. Создать табличную модель данной зависимости (MS Excel)

2. Создать графическую модель данной зависимости (MS Excel)

	А	В	
1	Н	t	
2	6	1,107	
3	9	1,355	
4	12	1,565	
5	15	1,75	
6	18	1,917	
7	21	2,07	
8	24	2,213	
9	27	2,347	
10	30	2,474	
11	33	2,595	
12	36	2,711	
13	39	2,821	
14	42	2,928	
15			

2. Создать графическую модель данной зависимости (MS Excel)

2	Удалит <u>ь</u>		Изменить подписи горизонтальной	ОСИ	на
*3 1	Изменить тип диагра	іммы <u>.</u>	значения высоты падения		
₽,	В <u>ы</u> брать данные				
	Поворот об <u>ъ</u> емной ф	фигуры	Правая кнопка мыши на диаграмме: В	ЗЫБРА	АТЬ
2	<u>Ф</u> ормат области пост	роения	ДАННЫЕ		

Выбор источника данных	1	Подписи оси
Диапазон данных для диаграммы: =Лист 1!\$8\$2:\$8\$14 Элементы легенды (рады) Подписи горизонтальной оси (категории) С Добавить Изменить Х Удалить С У Изменить		Диапазон <u>п</u> одписей оси: =Лист 1!\$A\$2:\$A\$14 ОК Отмена
Ряд 1 2 3 3 4 5 7 7 0 К Отмена		Выделить значения высоты падения (ячейки А2:А14)

Результат выполнения работы

